STABILITY OF THE CIRCULAR COUETTE FLOW
OF A POWER-LAW FLUID

V. S. Belokon! UDC 532.527.2

The stability of the circular Couette flow of a non-Newtonian power-law fluid is analyzed
in the small-gap approximation,

v We consider the stability of a steady lamiar flow in a gap between two infinitely long coaxial cyl-
inders, the fluid being incompressible and its viscosity being a function of the strain rate, For such a
fluid the relation between the stress tensor components and the strain tensor components can be expressed
as follows:

Oy =—pd;+2u(H)e; (i, j=1, 2 3). (1)
Here the viscosity p is a function of the intensity of shearing strains H = (Zeijeji)‘/ % and dij is the Kronecker
delta,
We express the pressure as well as the strain tensor components as sums
p=p"+p, e;=ej+ep (2
where the first terms represent the steady motion and the second terms represent the perturbation field.

We will now consider the motion of the fluid in a cylindrical system of coordinates, with the axes 1,
2, 3 denoting, respectively, the axes ¢, r, z. For the particular type of flow under consideration we have
€% = 1/278:200: (3)
with 'S/o denoting the shear rate in an wmperturbed flow.
With each component of the strain tensor in the expression for H written in terms of (2) and with the

e{j terms assumed small, we obtain, with the aid of (3}, the following expression for the viscosity of the
fluid in (1): '

B (H) = p (%) -+ 2101/07,, (4)

where the symbol ap/aito signifies a derivative at the point ¥ = ¥,. The components of the stress tensor be-
come then

035= — (P° + ') 8y I (Vo) + 2€1201/00 (708052 + 267,
from where we obtain an expression for the perturbations of the stress tensor components:
G;i = P’(Sif -+ 23;2\.30‘9”/ a\;o‘sil‘sjz‘i‘ 2n ('\7‘0)3;1'-

Since in this type of steady circular flow the trajectories of all particles constitute ares of concentric
circles, hence the components of the mperturbed flow velocity v and v} are zero. From the system of
equations for a steady wnperturbed flow we deduce that here (see [1], e.g.) the tangential velocity com-
ponent v} is invariant with respect to the coordinates ¢ and z. If in this case we assume also that the per~
turbation field is invariant with respect to ¢, then we obtain, in the conventional mamer, the following equa-
tions for the perturbations superposed on the principal circular motion:
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with the boundary values
U =0y =0, =0 at r=R; and r=R,. ("N

In Egs. (5)-(8) the viscosity of the fluid is y; = u[)'/o(r)], the density of the fluid is ¢, and the velocity
components of the perturbed flow are vy, v(;,, vy,

We will seek the perturbation field in the form

o, = exp (Bt) u, (r) cos Az, vy = exp (Bf) u, () cos Az, v, = exp (Bt) uy (r) sin Az. (10
Ingerting (10) into Eqgs. (5)-(8) and eliminating p', we obtain
o 0 ou w1 6 /.4 { 900 o
[(1 +-Vﬂ—g3)Lw)ﬁ—ﬁi]uz—{— (—2——')—— (yo—’f‘l+ yo) LA k‘aa& +@), (11)
Bo % My or r /oy or 0 Ho r r

1o &
(L—A2P@)(L——?»2)u1+ e (T
Ko 7 Ho

2 2 1 @ 1
—§——~—-—(L——7x2)u1=?£ x—v?pug, LEQ—Z+—~-—~—;. (12)
u, Or oOr Bo T or r or r?

With incompressibility stipulated here, the boundary conditions (9) become

d
u1:u2=%=0 at r=R, and r =R,

For further calculations one must know the relation u, = u["yo(r)]. For illustration, let us consider
the flow of a so-called power-law fluid, i.e., a2 non-Newtonian fluid whose shear rate and shearing stress
in the given type of flow are related as follows:

v = K¥s. (13)
Here K and n are the rheological parameters of the fluid.
For the given mperturbed circular flow we have
h=r o), (19
and the tangential stress 7 = Cr-%. Substituting these values for 7;0 and 7 into (13}, we obtain an equation
for v(?o and, after integration,
09 = Ar + Br'™", (15)
Constants A and B are determined from the boundary conditions
v (Ry) = Ry, Ug (Ry) = R,
where Q; and Q, are the angular velocity of the inner and of the outer cylinder, respectively:
A=0 (0 —1"")(1 — "%, B=QRI" (1 —a)(l =" (16)
Here w =Q,/Q, and 7 = R;/R,.
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The effective viscosity of a power-law fluid obeying the rheological equation (13) is yy = K%‘“.

Having calculated the shear rate according to (14) and taking into accownt (15) and (16), we obtain
an expression for the viscosity as a function of the radial coordinate:

wo = K (2n|B)y» /"2,

Many experiments dealing with the stability of the Couette flow of a viscous fluid (e.g., [2, 3]) have
shown that, when this flow becomes unstable, a steady secondary flow is induced. We will assume that
this happens also in the case of a fluid whose viscosity is a function of the strain rate. In order to estab-
lish the criteria of stability loss, it is sufficient to consider the case of neutral stability corresponding to
B =0. :

We then have the following system of equations for a power-law fluid:
2(1—n) d 2R o

” 2(n—1)(@3n—2
(L — A%, + ( rngz ) (L + A%y, -- — d_r(L___;vz)u]:—.T—-—:’_uz, (17
o(l—n) duy, 20—1) P dd | o
(nL—z.2)uz+—(—r—”)—~ 8%+ (”rz ) =" (—dz’r"LJr”rl 1. (18)

Here vy = (20l B2 —!Kp~t,
In Egs. (17) and (18) we now introduce a new variable, namely
E= (""" —RI"R/"—RI™, 0Lt <1
and consider the problem for the case where (Ré/ n_Ri / MR 1/ « 1 (the case of a small gap). Within an
accuracy down to terms of the order of (R}/?—Ri/M)nR{*/1, we have then

0 . 0 0 2A
vp 1 dug vp 44
7—-91[1 (—e)tl, =+ ==

n
and the system of Egs. (17)-(18) becomes
(ﬁ ——a2>2u ={l+af)vu (19)
d;z w) Vs
a4 )
(n—*——az)v=—-Ta2u, : (20)
dg?

where
a2 = An?( R;/n _ R}/n)~ R%_Z/";
T = — 4An™,Q(RY" — RI"FR™,
u = 1/2uv, RY" ™ [an?Q, (RY" — R"PT™;

V=, = — (1 — o).

Here T is the wiversal Taylor number,

When n =1, Egs. {19) and (20) become the respective equations for a Newtonian fluid. This case has
been thoroughly analyzed in [4].

Thus, in order to establish the stability criteria for the circular Couette flow of a non-Newtonian
power-law fluid in a small gap, it is necessary to consider the solution to the system of Egs. (19)-(20)
which will satisfy the boumdary conditions

u=v=du/d{=0 at {=0and {=1

According to Chandrasechar [4], we expand v into a series:

U=

b4

Cpsinmaf
1

and from (19) we find the solution for u which will satisfy the stipulated boundary conditions. We then insert
u and v into (20), multiply by krz (k =1, 2, 3, . . .), and, integrating with respect to { over its range of
variation, we obtain an infinite system of homogeneous linear equations, with an infinite number of -
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Fig. 1. Universal Taylor number as a function of n and a.

Fig. 2. Critical Taylor number T, and critical referred wave num-
ber a , as functions of the exponent n.

" known constants ey, (m?*m +a%)~2, In the stipulated approximation (m = k finite) we obtain a shorter finite
system of equations. In order for this system to have a nontrivial solution, its determinant A must be
equal to zero. From this requirement we derive a relation between T, @, n, and a:

A= “Ahm” = O’
Ay, = dmbro [(— 1)m*® — 1][(A202 - a?)(mPn -+ a?)] "t

— 2amkn® [(k*n? + a®)?(sh®a — a?)]H(shacha — a)[l -+ (1 + a)(— 1)+

+ (sha—acha)[(— ¥ + (1 +a)(— 1y — a(l 4 a)(— 1)+t
— daash a (m*n? - a®)sha + a (— 1y"[(— [)ym+t .
+ 17285, + 0¥, — 1/2 (nkPn? + a?)(k20% - 0)%,,,a72T71, (21)

Here

0, ifm-4-& is even, and m=:£k, 1/4, if m=k,
4dmk 2 - 1
k2 ___m2 m2n2_‘ra2 n'l (k2 ___mZ)

kam =

J, if m-+k& isodd

If (21) determines the relation T = T(a, n, o), then the critical value of the Taylor number T, cor-
responding to the onset of instability is the minimum value of T(a) for each n and a. Numerical evalua~
tion has shown that T, calculated to the first approximation (m =k = 1) differs by about 1% from T, cal-
culated to the second or even the third approximation. For n =1, the value T, here differs by about the
same amount from the value obtained in [2].

For the first approximation we obtain from (21):

(22)
a®(2 -+ o) I (7@ + a®)?(sha + a)

T— 2 (nn? 4 @¥)(s® - @®) | 1 16an’ch? (a/2) {1 - a(l +a) ‘”‘1
e 22+ a)sha—a)ch®*(0/2) il.

In Fig. 1 are shown T = T(a) curves computed according to (22) for several values of n with @ =—1
(inner cylinder rotating, outer cylinder stationary).

The critical Taylor number and the referred wave number are shown in Fig. 2 as functions of n,

Since the effective viscosity of a power-law fluid in the given type of flow varies throughout the gap,
hence, in the case of a rotating inner cylinder and a stationary outer cylinder, the stability of such a flow
ghould be determined by the fluid layer nearer to the rotating cylinder surface. For example, at n <1 the
effective viscosity becomes minimum at the surface of the inner cylinder and, evidently, the flow of such a
fluid should become wmstable earlier than the flow of a constant-viscosity fluid, which is also confirmed by
our calculations. It follows from the preceding analysis that the angular velocity of the inner cylinder at
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which the flow becomes unstable is determined not only by the effective viscosity, referred to the given
shear rate in the gap, but also by the change in the critical Taylor number,

NOTATION
Tij are the components of the stress tensor;
ejj are the components of the strain tensor;
p is the pressure;
Y is the shear rate;
H is the intensity of shearing strains;
Ji is the effective viscosity of the fluid;
I is the density of the fluid;
Vrs Yz, Yo are the velocity components along the respective coordinate axes;
K, n are the rheological parameters of the fluid;
Ri, Ry are the radius of the inner and of the outer cylinder, respectively;
2, Q are the angular velocity of the inner and of the outer cylinder, respectively;
T is the universal Taylor number;
T, is the critical value of the universal Taylor number;
a, is the critical value of the referred wave number.
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